Classification of Mammographic Images Using the Joint Best Basis and the Approximate Klt
نویسندگان
چکیده
Breast cancer is currently one of the major causes of death for women in the U.S. Mammography is currently the most effective method for detection of breast cancer and early detection has proven to be an efficient tool to reduce the number of deaths. Mammography is the most demanding of all clinical imaging applications as it requires high contrast, high signal to noise ratio and resolution with minimal x-radiation. According to studies [16], 10\% to 30\% of women having breast cancer and undergoing mammography have negative mammograms, i.e. are misdiagnosed. Furthermore, only 20\%-40\% of the women who undergo biopsy have cancer. Biopsies are expensive, invasive and traumatic to the patient. The high rate of false positives motivate research aimed to enhance the mammogram images, to provide Computer Aided Diagnostics tools that can alert the radiologist to potentially malignant regions in the mammograms and to develop tools for automated classification of mammograms into benign and malignant classes (see for example [4, 8]). In this paper we present classification results of mammographic images from an early stage of malignancy using feature vectors based on wavelet packets, PCA and the Approximate Karhunen Loeve transform. We employ an innovative method that provides classification results better than the average performance of radiologists. The method was tested using database of mammograms from an early stage of malignancy. Correct detection is harder and more important at an early stage of malignancy.
منابع مشابه
Improvement of Breast Cancer Detection Using Non-subsampled Contourlet Transform and Super-Resolution Technique in Mammographic Images
Introduction Breast cancer is one of the most life-threatening conditions among women. Early detection of this disease is the only way to reduce the associated mortality rate. Mammography is a standard method for the early detection of breast cancer. Today, considering the importance of breast cancer detection, computer-aided detection techniques have been employed to increase the quality of ma...
متن کاملDetection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملDetection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملExtraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کاملبهسازی تصاویر ماموگرافی با استفاده از تبدیل موجک و فیلتر همومورفیک
Mammography is the most effective method for the early diagnosis of breast cancer diseases. As mammographic images contain low signal to noise ratio and low contrast, it becomes too difficult for radiologists to analyze mammogram. To deal with the above stated problems, it is very important to enhance the mammographic images using image processing methods. This paper introduces a new image enha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002